“ FORMCENTRIC

Developer Manual

Version 2506.0.1.0

Formcentric for CoreMedia: Developer Manual

Copyright © 2025 Formcentric GmbH
Schaartor 1, 20459 Hamburg
Germany

The contents of this document — whether in whole or in part — may not be reproduced,
conveyed, disseminated or stored in any form whatsoever without obtaining prior written
permission from Formcentric GmbH.

Disclaimer

We reserve the right to alter the software and the contents of the manual without notice. We
accept no liability for the accuracy of the contents of the manual, nor for any losses that may
result from the use of this software.

Trademarks

In the course of this manual, references may be made to trademarks that are not explicitly
marked as such. Even if such a mark is not given, the reader should not conclude that the
name is free of third-party rights.

Access to documentation

You can always find the latest version of the manual in the Help centre help.formcentric.com.
Older versions and additional information are available in the Formcentric Helpdesk
helpdesk.formecentric.com.

https://help.formcentric.com/en/
https://helpdesk.formcentric.com

B [(o Yo [T o 7o o KPR 1

B I =T o1 o To] (o =AY ORI 1

P2 @ 1V =Y o T RS 2
3. SYSEM rEQUIrEMENTSceeeiieeeeeee e 4
T 0] (=Y =1 7= 4o o I 5
4.1. Add Maven Repository and Npm regiStrYccovieeiiiiieiiiiiiiieeeeeeeeee e 5

4.2. Download Formcentric EXtensions archivecccccccevvveviiiiiiiiiiiiiecciceceeceeeeeee, 5

4.3. Integrate Formecentric EXIENSIONScoiiiiiiiiiiiiiee e 6

4.4, Add Formcentric StUAIO QPP ...ccoveeeiiiiiiii e e e e aeeeens 6

4.5. Download Formcentric Frontend arChiveccooooiiiii e, 7

4.6. Integrate FOrmMCENtriC BriCKuuuuuuuiuuiiiiiiiiiiiiiiiiiiieeiuieiueeeneeeseeeeeenneennenrenennnennnes 7

4.7. BUIlAING the WOIKSPACEcoiiiieiiiiiiiiiii ettt e et s e e e e e e e ee bbb e e e e e e e eesenas 8

LT @ o] o1 =0 =11 (0] o HEUU PO UPPPRPPIN 9
B.1. CoreMedia HEeadIESS SEIVENcccciiiieiiiiiie e e e 9

I O AN =4 (=] 1< (o] o RSP 9
5.2.1. Spring configuration ClaSSESccueiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeee e 10

5.2.2. Usage without Formcentric AnalytiCscooovvvvvieiiii 11

5.2.3. Formcentric license file ..., 11

B.2.4, WED SECUILY ..ueiieeeiieeeiiiiee ettt e et e e e e e e e eeea b e e e e e e e e eerabraanes 11

5.2.5. Saving the form Stateooovviieiii e 13

5.2.6. Password encCryptionuciiiiiiiiiiiiiice et e 14

5.3. Formcentric ANAIYICS SEIVEISuuuciiii it e e ee e e e e e aeaaaaas 15

B.4. Formcentric HEadlESS SEIVETooeiiiiieii ittt 16

6. Programming and CUSIOMISAtIONvuuiiiiiiiiiiiiiiieiieieeieeeeeeeeeeeee e eeeeeeeeeeeeeeeeeeeeeeeeeeeeees 17
6.1. Extending the Formcentric FOrm EditOrcceoviiiiiiiiiiiiiiiei e 17
6.1.1. Adding a new form elementccoeeiiiiiiiiiiiiici e 18

6.1.2. Adding a New validatorccoiiii i 20

6.1.3. AddIiNg @ NEW ACLIONccoeeiiiiie e e e e eeeeens 21

6.1.4. Adding new element Propertiesccceuuiiiii e 23

6.1.5. Input elements for element Propertiesccccevvviieiii e, 24

6.1.6. Editing existing form elementsccccceeeeiiiiiiiiiiiie e 30

6.1.7. User interface internationalisationcccccccvvviiiiiiiiiiiieeeee e, 30

6.2. Extending the CAE integrationccooeiiiiiiiiiiiiie e 31
6.2.1. FreeMarker templatesccooe i 31

6.2.2. Implementing an aCtioNccuviiiiiiiiiiiiieiecceeeeeeeeeeeee e 40

6.2.3. Adding variables for pre-filling form fieldsoeevieeiiiiiieiiieeiiieeieeeeeeee, 42

6.2.4. Implementing a REST SEIVICEcccoivvviiiiiiiieeeeeeeeeceen et eeens 43

I ST = (2= 1o g1 o) PR 47

6.3. Extending the server appliCationccooooiiiiiiiiiiii e 52
6.3.1. Implementing an actioncccoooe i 52

6.3.2. Adding variables for pre-filling form fields ..., 53

6.3.3. Implementing a REST SEIVICEccooeeieiiee e, 53

B.4. FOrmMCENtriC ClENT ... nnnnnnnes b4
B.4. 1. TREME .. bb

B.4.2. INIAlISALION ...vveeii i e b5

Formcentric for CoreMedia | Developer Manual iii

RO T =T 001 o] F= 1 (< PP 56
6.4.4. Special integration SCENAIIOScoieiiiiiiieeiiie e 63
B.4.5. TroubleSNOOtINGccoiiiiice e e e e e e e e eeeeans 64
Formcentric for CoreMedia | Developer Manual iv

1. Introduction

This manual describes how to install, configure and extend the Formcentric form
manager extension. It is intended to be read by administrators and developers. To
get the most out of this document, you will need knowledge of CoreMedia from both
an administrator and user perspective, as well as experience in developing Java soft-
ware.

Chapter 4, Integration : describes the steps that you need to complete in order to
install Formcentric.

Chapter 5, Configuration : describes how you configure the various Formcentric
components.

Chapter 6, Programming and customisation : shows how you can extend Form-
centric to offer additional functionality.

1.1. Terminology

This manual makes use of the following terms:

Term Description

Form author The person that creates and edit forms.

User The person that fills out a form.

Form An HTML web form displayed in a web browser.

Form elements All of the elements used when constructing a form (input fields,
drop-down lists, check boxes, etc.).

Editor CoreMedia Studio

Form Editor An extension to CoreMedia Studio, with which forms can be cre-

ated and edited.

Form data The data entered into the form by the user.

Formcentric for CoreMedia | Developer Manual

2. Overview

On the editing side, Formcentric provides a CoreMedia Studio app with a graphical
form editor, with which form authors can create and edit any number of web-based
forms.

For form presentation and the processing of the submitted form data, Formcentric
provides you with an integration into the CoreMedia CAE or, alternatively, a stand-
alone server application.

When using the CAE integration, the HTML output is generated server-side by using
content beans and FreeMarker templates. When using the Formcentric Headless
Server, form rendering is completed browser-side by a React client supplied by Form-
centric.

Both integrations include various Spring controllers for processing the data. A form
controller validates the data it receives and forwards these to purpose-built actions,
which then carry out the final processing. This approach permits the integration of
various backend systems, such as mail servers, Formcentric Analytics or databases.

The Analytics component included with Formcentric provides storage and reporting
functions for the form data submitted. Formcentric Analytics consists of two web appli-
cations. The Backend application is responsible for storing the data in a relational
database. To do so, it provides a REST interface, which clients can use to communi-
cate with the Backend. Alongside the actual form data, the Backend also stores form
sessions, if this feature has been activated for the form in question.

The Reporting application is a single-page application with which the form data stored
in the Backend can be displayed, edited, deleted and exported.

Formcentric for CoreMedia | Developer Manual

Browser

Studio WebApp

Formcentr
Editor

Editing Company Infrastructure
HTTP Server / Serviet Engine LDAP Server

Studio WebApp Preview WebApp Coremedia
E

. — M
Formcentri Formcetric
Studio Integration CAE Integration
RabbitMQ

Formcentric
s

CoreMedia Content Server

p— N

CoreMedia Live System

HTTP Server / Servlet Engine

Delivery Application CoreMedia Formcentric
CAE Headless Server Headless Server
Formcentric
CAE Integration

CoreMedia Delivery Server

Formeentric
Doctypes

Formcentric Analytics Environment (Preview)

HTTP Server / JSP & Serviet Engine Solr Search Engin
——
Reporting Backend m

Formcentric Analytics Environment (Live)

HTTPServer / JSP & Servlet Engine Solr Search Engine
=

Reporting Backend

Application Application

Figure 2.1. Architecture overview

—
Analytics
DB

Formcentric for CoreMedia | Developer Manual

3. System requirements

Formcentric 2506.0.1.0 is intended for use only with the matching version of the Core-
Media Content Cloud.

Formcentric requires the JavaScript framework “jQuery” from version 1.12.4 and Java
17.

Apart from this, the same system requirements apply as for the CoreMedia Content
Cloud version deployed.

Formcentric for CoreMedia | Developer Manual

4. Integration

This section, written from a software developer's point of view, shows you how to
integrate Formcentric into the CoreMedia Blueprint.

If your solution is not based on the CoreMedia Blueprint, you can integrate the Form-
centric Extension exactly as described in the guide. All you need to do is ensure you
remove the dependencies used out of the CoreMedia Blueprint.

4.1. Add Maven Repository and npm registry

Extend your Maven settings.xml to include the Formcentric Artifactory:

<servers>
<server>
<id>maven.monday-consulting.com</id>
<username>my-username</username>
<password>{my-encrypted-password}</password>

</server>
</servers>

To obtain your personal login details, please contact our Helpdesk
(helpdesk@formecentric.com).

Configure npm for access to the packages in the @formcentric scope in the Form-
centric Artifactory:

pnpm config set @formcentric:registry \
https://maven.monday-consulting.com/artifactory/api/npm/formcentric-npm/

Use npm to log into the npm registry:

npm login --scope=@formcentric --registry=\
https://maven.monday-consulting.com/artifactory/api/npm/formcentric-npm/

You can use https://maven.monday-consulting.com to search for artifacts, download
artifacts in your browser or stay informed about new releases.

4.2. Download Formcentric Extensions archive

The Formcentric Extensions archive contains all the files that you need to integrate
Formcentric as a CoreMedia extension into the standard CoreMedia Blueprint, in
version 2506.0.1. We provide you with the archive as a tar or zip file. Both archives
include the same content: you can pick the format that is right for you.

mvn dependency:copy -Dartifact=com.formcentric.coremedia:
formcentric-blueprint-extension:2506.0.1.0:tar
-DoutputDirectory=.

Formcentric for CoreMedia | Developer Manual

The folder structure for the archive is adjusted to the Blueprint Workspace: the various
formcentric extension folders for the various CoreMedia components, each under
modules/extensions, must be moved accordingly into the corresponding directories
(e.g. apps/cae/modules/extensions) in the Blueprint workspace.

O The matching folder structure means that unpacking and relocating the
extension is possible by executing just one command in the Blueprint’s root
directory:

tar -xvf formcentric-blueprint-extension-*.tar

4.3. Integrate Formcentric Extensions

In Section 4.2, “Download Formcentric Extensions archive”, you downloaded the
Formcentric Extensions and unpacked these to the correct location in the Blueprint.
As a next step, you modify the Maven parent in all Formcentric Extensions (such as
apps/cae/modules/extensions/formcentric/oom.xml) and in all submodules to match
the Groupld and version of your Blueprint:

<parent>
<groupId>your.blueprint.groupId</groupId>
<artifactId>component.extensions</artifactId>
<version>your.blueprint.version</version>
</parent>

O To do this, you can use the scripts already present in the Blueprint Work-

space, set-blueprint-version.sh and set-blueprint-groupld.sh, because the
Formcentric Extensions ship with the default Blueprint values for Groupld
and version.

The Formcentric Extensions are now integrated into your Blueprint. As a final step, the
CoreMedia extensions need to be synchronised and activated. To do this, follow the
CoreMedia documentation for the CoreMedia Maven Extension Plugin and activate
the extension with the name formcentric:

mvn -f workspace-configuration/extensions extensions:sync \
-Denable=formcentric

4.4. Add Formcentric Studio app

To use the Formcentric Editor app in the Studio, you first need to add the app to the
Studio. In apps/studio-client/global/studio/jangaroo.config.js, add the following lines
to the appPath:

"@formcentric/studio-app.customizations": {

Formcentric for CoreMedia | Developer Manual

buildDirectory: "dist",

h

In apps/studio-client/global/studio/package.json, add the following line to the depen-
dencies:

"@formcentric/studio-app.customizations": "<WORKSPACE VERSION>"

Replace WORKSPACE VERSION with the version from package.json.

As a final step, add the Formcentric app to the packages in apps/studio-client/pnpm-
workspace.yam|.

- "apps/formcentric/app"

4.5. Download Formcentric Frontend archive

The Formcentric Frontend archive contains all the files that you need to integrate the
Formcentric Brick into the standard CoreMedia Blueprint (or Frontend) Workspace,
in version 2506.0.1. We provide you with the archive as a tar or zip file. Both archives
include the same content: you can pick the format that is right for you.

mvn dependency:copy -Dartifact=com.formcentric.coremedia:
formcentric-blueprint-frontend:2506.0.1.0:tar
-DoutputDirectory=.

You use the same technique to integrate the Formcentric Brick for extending the
theme. Move the formcentric folder in frontend/bricks into the frontend/bricks folder in
the Blueprint Workspace or alternatively into the bricks folder in the Frontend Work-
space.

O The matching folder structure means that unpacking and relocating the
extension is possible by executing just one command in the Blueprint’'s root
directory:

tar -xvf formcentric-blueprint-frontend-*.tar
or for the Blueprint Frontend Workspace:

tar -xvf formcentric-blueprint-frontend-*.tar --strip=1

4.6. Integrate Formcentric Brick

To extend the theme, the final step is to integrate the Formcentric Brick that is now
present in frontend/bricks/formcentric or in bricks/formcentric.

These instructions are based on the chefcorp-theme, an example theme from the
Blueprint. Integration into project-specific themes follows the same principles.

Formcentric for CoreMedia | Developer Manual

1. All of the Bricks used are listed in the frontend/themes/chefcorp-theme/
package.json directory. Add @formcentric/formcentric-coremedia-frontend here:

{

"name": "@coremedia/corporate-theme",

"dependencies": {
.oy
"@formcentric/formcentric-coremedia-frontend": "workspace:x"

b

O Avoid version conflicts by adjusting the jQuery version used in the
package.json for the Formcentric Brick to match the jQuery version used in
the theme (if one is present here).

O To be able to use autocomplete with the Formcentric FreeMarker macros,
the formcentric.ftl can be added to the implicit imports in the frontend/src/
main/resources/freemarker_implicit.ftl file:

[#-- asset management download portal --]

[#import "/1lib/coremedia.com/blueprint/am.ft1" as am]
[#-- Formcentric --]

[#import "/1ib/formcentric.com/formcentric.ftl" as fc]

4.7. Building the Workspace

Formcentric is now fully integrated as a Blueprint extension and the Blueprint theme
has been extended by the Formcentric Brick. You can now build the Workspace as
usual with Maven.

Formcentric for CoreMedia | Developer Manual

5. Configuration

For form presentation and the processing of the submitted form data, two alternatives
are available.

5.1. CoreMedia Headless Server

The GraphQL extension from Formcentric for the CoreMedia Headless Server
extends the schema for the standard form document type Form by two properties:
these are required for use with the Formcentric Client and the Formcentric Headless
Server.

These are:

formDefinition (String): Encrypted form definition for use with the Formcentric
Client.

formReferences (String): Encrypted references that reference other CoreMedia
content in the form definition and which are only used by the Formcentric Headless
Server.

formReferencedContent: All of the content documents linked from the form defini-
tion, in the form of an array of CMTeasable objects.

A minimal GraphQL example query might look as follows.

{
content {
content(id: "<replace with FORM ID>") A{
. on Form {
formDefinition
formReferences
formReferencedContent {
. on CMTeasable {

type
}

5.2. CAE extension

Please take the Spring configuration classes from the Formcentric Blueprint Work-
space mentioned above. We supply this to you as a ZIP archive for integration into
the CoreMedia Workspace.

The files are located at formcentric-blueprint-cae/src/main/...

The folder structure is as follows:

Formcentric for CoreMedia | Developer Manual

File/directory Description

java/com/formcentric/... Spring configuration classes and blue-
print integration code

resources/META-INF/coremedia Configuration properties and Content-
bean declaration

resources/META-INF/spring Spring Boot autoconfiguration imports

5.2.1. Spring configuration classes

The configuration of the form extension within the web application is performed
using Spring configuration classes, which are stored in the formcentric-blueprint-cae/
src/main/java/com/formcentric/coremedia/blueprint/cae/config source directory. The
following settings can be configured here:

FormcentricAutoConfiguration.java

This autoconfiguration aggregates all the required Spring configuration classes.

FormcentricAnalyticsConfig.java

Configures the Formcentric Analytics integration, if it is enabled.

FormcentricCaptchaConfig.java

The open source JCaptcha framework is used to generate captchas. The configura-
tion here is a standard JCaptcha configuration, which can be used to influence the
appearance and behaviour of individual captchas. For a detailed description of config-
uration options, please visit the project website.

https://jcaptcha.atlassian.net/wiki/display/general/Home

FormcentricControllersConfig.java

Configures the form controller, the REST controller and the FormCommandBeanFac-
tory that is used to create the FormCommandBean. The FormCommandBean calls
the configured initializer, validators and actions, and generates the form model.

You configure new actions, REST services, mail body renderers and validators by
registering them in the Spring applicationContext.

formcentric-contentbeans.xml

Configures the form content bean. If your document model differs, then you will need
to modify or delete this configuration.

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="http://www.springframework.org/schema/beans

Formcentric for CoreMedia | Developer Manual

https://jcaptcha.atlassian.net/wiki/display/general/Home

http://www.springframework.org/schema/beans/spring-beans.xsd">
<import resource="classpath:/framework/spring/blueprint-contentbeans.xml"/>

<bean name="contentBeanFactory:Form"
class="com.formcentric.coremedia.blueprint.contentbeans.FormImpl"
scope="prototype"
parent="abstractTeasable-blueprint-doctypes">
<description>
contentbean mapping for contents of type 'Form’
</description>
<property name="digester" ref="formDigester"/>
</bean>
</beans>

For the form framework to be capable of handling your specific form content
bean, it must implement the com.formcentric.contentbeans.WebForm inter-
face.

An implementation can be found in the package com.formcentric.core-
media.blueprint.contentbeans .

5.2.2. Usage without Formcentric Analytics

Setting the property analytics.enabled to false fully disables the Formcentric Analytics
integration on the backend side. You will need to manually adapt the editor configu-
ration to fully remove the Analytics action from the available actions.

5.2.3. Formcentric license file

The property formcentric.license configures the LicenseLoader for Formcentric. With
it the path towards the license file can be configured.

Example (Linux / Unix): /path/to/formcentric-license

Example (Windows): C./path/to/formcentric-license

O Paths, that do not start with a / will be resolve relative from the Webapp root.

5.2.4. Web security

Formcentric contains a security servlet filter as a safeguard against cross-site
scripting (XSS) attacks and cross-site request forgery (XSRF) attacks. This filter
removes illegal HTML tags from the form data submitted. The filter also checks to
confirm that the form data contains a valid XSRF token.

To safeguard against XSRF attacks, each form can be given an additional XSRF
token as a hidden parameter: this is then submitted to the web application along with
the normal form data. The security filter verifies that the token submitted matches the

Formcentric for CoreMedia | Developer Manual

11

token stored in the user’s session. If this is the case, the request is forwarded to the
web application. If not, a 401 error message is returned to the calling client and the
failed access is logged in the web application log using the warn log level with the
following information:

* URL accessed

* Form data submitted (POST parameter)

IP address of the accessing client

L]

Fully qualified name of the accessing client or the last proxy used

The following example shows you how to insert the XSRF token into the form
document’s output template:

<#assign targetUrl=cm.getLink(self, "ajax")!""/>
<form method="post" class="mwf-form ${self.properties['style_class']!""}"

data-mwf-form="${self.shortId}"
data-mwf-settings="'{
"yrl":"${targetUrl}",

s .

<#-- Include XSRF token– -->
<@fc.xsrfToken />

</form>

Alongside the form template, you must also include XSRF token handling in the output
template of the InputField, ComboBox, RadioGroup, CheckBoxGroup and FileUpload
elements.

The following example shows you how you can insert the XSRF token in the
InputNode.fileUpload.ftl template’s form data.

<#-- Construct upload URL, add XSRF token parameters and
store in variable -->
<#tassign uploadUrl=cm.getLink(self, "upload", {"form": form,
"tokenName": fc.xsrfTokenName(),
"tokenValue": fc.xsrfTokenValue()})!"" />

<div class="mwf-upload"
data-mwf-fileupload="A{
"yrl":"${uploaduri}",
"id":"${self.id}",
"name":"${self.name!""}",
"autoUpload": ${self.properties['avto_upload']},
"labels": ${rowLabels},

Formcentric for CoreMedia | Developer Manual

12

"previewMaxWidth": "120",
"previewMaxHeight": "120"

}>

You configure the security filter with the help of the available properties with the secu-
rity. prefix. You can use the following configuration parameters:

Parameter Defaultvalue

security.xsrfPrevention true

security.xsrfMethods POST

security.xsrfSessionBasetiue

security.xsrfTokenName com.formcentric.

XSRFToken

security.xssPrevention true

5.2.5. Saving the form state

Description

You use this parameter to
specify that the user session
should be secured with an
additional XSRF token (true|
false).

Here, specify the HTTP
methods (GET, POST) for
which an XSRF token will be
required.

You can use this parameter
to specify whether the token
should be valid for the en-
tire session (true) or should
be renewed on each page re-
load (false).

Here, enter the name of the
request parameter that will
be used to pass the XSRF
token. The current form ID
is automatically added to the
end of the token name.

Example:

myTokenName:1234=5E29A7 ...

You use this parameter to
specify that illegal HTML
tags will be removed from the
form data submitted. The de-
fault behaviour is to strip all
HTML tags.

By default, all the data entered by the user is saved in the user session on the server.
Where forms are complex, however, the session may expire before the user has

Formcentric for CoreMedia | Developer Manual

13

finished completing and sending the form. In this case, the data items stored in the
session are lost.

Formcentric therefore offers you the option of saving the entered data for a longer
period of time. This means users can take a break from form entry and continue filling
out the form at a later point in time.

Formcentric offers you two separate store implementations as Spring beans:

FileFormStateStore

This implementation stores the form data in an encrypted file on the server. The asso-
ciated file name is stored in a cookie. The cookie's directory, encryption password,
lifetime, domain and path can all be specified in the Spring bean declaration. By
default, it is only enabled if Formcentric Analytics is disabled.

BackendFormStateStore

This implementation stores the form data in the Formcentric Analytics backend data-
base. It is enabled by default if Formcentric Analytics is enabled.

5.2.6. Password encryption

In the default configuration, login credentials for databases, mail servers, etc. are
stored in various configuration files in plaintext. In the event of a security breach
affecting the server, attackers would gain access to valid login credentials. For this
reason, you are given the option of storing passwords in an encrypted format. In this
case, passwords are decrypted only when the application starts, using the stored
encryption password. The password to be used for encryption must be stored in an
environment variable before the Formcentric web applications are started. The default
environment variable used by Formcentric for this is fc. ENCRYPTION_PASSWORD.

export MWF_ENCRYPTION_PASSWORD=my-encryption-password

You are provided with a command line program for encrypting the passwords. Once
you have encrypted the passwords, they must then be entered manually into the corre-
sponding configuration file.

Download the program from the Monday Maven repository by executing the following
command at the command line. You can obtain the necessary login credentials by
contacting our Helpdesk (helpdesk@formcentric.com).

mvn org.apache.maven.plugins:maven-dependency-plugin:3.0.2:copy \
-Dartifact=com.monday.webforms:encryption-cli:1.0:jar \
-DoutputDirectory=.

To encrypt a password, enter the following command at the command line:

java -jar encryption-cli-1.0.jar \
-p '<encryption-password>' -e '<password>'

Formcentric for CoreMedia | Developer Manual

Please note that the parameters must be entered in single quotation marks. You can
enter the following command line parameters when starting:

Parameter Description

-p encryption-password The password to be used for encryption or decryption.

-d Decrypt password
-€ Encrypt password
-? Show help

5.3. Formcentric Analytics Servers

The Formcentric Analytics Servers, i.e. the Formcentric Analytics backend application
as well as the Formcentric Analytics reporting application, integrate themselves as
an additional app workspace into the CMCC Workspace. After unpacking the Form-
centric extension (see Section 4.2, “Download Formcentric Extensions archive”), the
Formcentric Analytics Servers are provided as a new Maven module in the apps/
formcentric-analytics directory. The structure and the layout are inspired by the CMCC
app workspaces, so you will already be familiar with most of the principles used here.

To fully integrate the Formcentric Analytics Server workspace into the CMCC build,
include the Maven module in the list of app workspace modules in the root POM of
the CMCC Workspace:

<module>apps/formcentric-analytics</module>

The Formcentric extension provides the required SQL schema for the default MySql
DB (see. global/deployment/docker/mysql/init.db/createFormcentricAnalyticsDB.sql
and might be adapted for every other DB supported by Formcentric Analytics. It also
provides the config for the Solr core/configset required by the Formcentric Analytics
backend server (see the fecanalytics configset and 0-config-formcentric-analytics.sh
under apps/solr/...).

O Full integration of the Formcentric Analytics Servers into the CMCC Work-
space is an optional step. The Workspace can also be used individually, e.g.
to enable a deployment or operational scenario outside the CoreMedia stack.

Both Formcentric Analytics Servers are Spring Boot applications. As such, all the
standard configuration types are available, such as properties files, environment
variables, runtime parameters, etc. The available parameters are described in Form-
centric Analytics documentation, bundled as part of the Formcentric extension (see
apps/formcentric-analytics/doc-4.5.10).

An example integration into the Docker Compose Setup is provided as part of the
Formcentric extension and will be extracted into global/deployment/docker/compose/
formcentric.yml.

Formcentric for CoreMedia | Developer Manual

15

5.4. Formcentric Headless Server

The Formcentric Headless Server integrates itself as an additional app workspace into
the CMCC Workspace. After unpacking the Formcentric extension (see Section 4.2,
“Download Formcentric Extensions archive”), the Formcentric Headless Server is
provided as a new Maven module in the apps/formcentric-server directory. The struc-
ture and the layout are inspired by the CMCC app workspaces, so you will already be
familiar with most of the principles used here.

To fully integrate the Formcentric Headless Server workspace into the CMCC build,
include the Maven module in the list of app workspace modules in the root POM of
the CMCC Workspace:

<module>apps/formcentric-server</module>

O Full integration of the Formcentric Headless Server into the CMCC Work-
space is an optional step. The Workspace can also be used individually, e.g.
to enable a deployment or operational scenario outside the CoreMedia stack.

The Formcentric Headless Server is a Spring Boot application. As such, all the stan-
dard configuration types are available, such as properties files, environment variables,
runtime parameters, etc. The available parameters are described in the following
section.

The location used to store the Formcentric licence is configured for the Formcen-
tric Headless Server in the license.properties file.

An example integration into the Docker Compose Setup is provided as part of the
Formcentric extension and will be extracted into global/deployment/docker/compose/
formcentric.ymi.

Formcentric for CoreMedia | Developer Manual

16

6. Programming and customisation

6.1. Extending the Formcentric Form Editor

The Formcentric Studio integration is a single-page application that is based on the
JavaScript React framework. The Form Editor's user interface is generated client-
side on the browser using the JSON data sent by the server. The interface layout is
specified declaratively using a number of JavaScript configuration files. This approach
makes it easy for you to make changes and create extensions to the form editing
interface.

The main starting-point for making changes to the form editing interface consists of
the JavaScript configuration files that are stored in the development workspace in
the apps/studio-client module in the apps/formcentric/app/config directory. All of the
changes described below are made to the files in this directory.

The available form elements and their properties are described as JSON objects. The
React application uses these to generate the form editing interface. The following
example shows a configuration snippet for the textArea form element.

{
icon: 'textarea',
type: 'textArea',
properties: {
general: [
{
title: 'name',
type: 'text',
properties: {
required: true
}
}I
{
title: 'label’,
type: 'text'
},
{
title: 'hint',
type: 'text'
}I
{
title: 'value',
type: 'wysiwyg'
}I
1
}
}

Formcentric for CoreMedia | Developer Manual

17

6.1.1. Adding a new form element

Extend the Form Editor to include a new form element by extending the configura-
tion fields_custom.js. If you want to extend the Editor to include the form element
termsCheckbox with the properties name, text and link, for example, then add the
following object definition to the JavaScript array in the configuration fields_custom.js.

[

{
icon: 'termscheckbox',
type: 'termsCheckbox',
properties: {
general: [
{
title: 'name',
type: 'text',
properties: {
required: true
}
}I
{
title: 'text',
type: 'wysiwyg',
properties: {
required: true
}
}
{
title: 'link',
type: 'reference',
properties: {
refType: 'pageref',
FS_refType: 'pageref'
}
}I
1
}I
specialProperties: {
condition: {
conditionable: false,
operators: {}
}
}
}

1

Please note: The external JavaScript array already exists and simply needs to be
extended by the configuration object.
The table below describes the possible attributes that a field definition can have at
the first level.

Attribute Description

icon Type: String

Formcentric for CoreMedia | Developer Manual

Attribute

type

properties

specialProperties

Description

Name of the icon to load. The name specified must match the
filename of the icon without the file extension.

Type: String

Form element name

Type: Object

Defines the properties of a field that can be edited in the Form
Editor on the right-hand side, under Field properties. The object
properties of properties each correspond to individual Editor
tabs. The following JSON snippet configures two tabs with the
name general and special, with a total of three properties: name,
label, hint.

properties: {

general: [
{
title: 'name',
type: 'text'
}I
{
title: 'label’,
type: 'text'
¥
1,
special: [
{
title: 'hint',
type: 'text'
¥

}

To ensure that the field can be uniquely identified during later
processing, the property titel is required with the value name in
the general array.

For a list of all available property types, please see
Section 6.1.5, “Input elements for element properties”.

Type: Object

You use the specialProperties attribute to configure proper-
ties that are evaluated by the Editor for internal functions. The
following JSON snippet defines the usage of the field within a
condition.

specialProperties: {
condition: {
conditionable: true,
operators: {

Formcentric for CoreMedia | Developer Manual

19

Attribute Description

startswith: {
values: [],
freeField: true,
useChildren: false

}l
endswith: {
values: [],
freeField: true,
useChildren: false
}l
contains: {
values: [],
freeField: true,
useChildren: false
}

F

Set conditionable: true to specify that the field can be selected
in a condition.

You specify the operators that are selectable in the condition for
this form element type in the operators object. An operator defi-
nition always utilises the schema

<operator-name>: {values: [], freeField: true, useChil-
dren: false}.

The name of the operator is also used as the translation ID for
user interface internationalisation (see Section 6.1.7, “User inter-
face internationalisation”).

In the values attribute, you can specify a string array containing
values that can be selected by the form author when defining a
condition.

If you specify the attribute freeField: true, this lets form
authors enter user-defined values. This option is required for
comparison operators, for example, where form authors need to
enter their own comparison values.

If the new field type is a list type with predefined options, you
can specify the attribute useChildren if you want to make the list
options selectable as a value for the condition.

6.1.2. Adding a new validator

To add a new validator to an input field, extend the format property of the corre-
sponding input element.

Formcentric for CoreMedia | Developer Manual

20

The example below shows the configuration of the email validator for the single-line
text field (inputField).

{
title: 'format',
type: 'dropdown_format',
properties: {
options: {
email: {
enabled: true,
fields: {
errormessage: {
title: 'errormessage',
type: 'text'
}
}
}
}
}
}

The specified attribute name (email in the example) must match the external name
of the validator. The name is also used for user interface internationalisation. In the
translation file, the translation ID <validator-name>Validator is used to search for a
label for the validator.

You can use fields to define the required fields for the validator. The available field
types are listed in the table under Section 6.1.5, “Input elements for element proper-
ties”.

6.1.3. Adding a new action

Extend the Form Editor to include a new action by extending the configuration
actions_custom.js.

If you want to extend the Editor to include the action simpleMailAction with the prop-
erties to, subject, body and note, for example, then add the following object definition
to the JSON array in the configuration actions_custom.js.

[

icon: 'simplemailaction',
type: 'simpleMailAction',
properties: {
general: [
{
title: 'to',
type: 'text',
properties: {
required: true
}
}I

Formcentric for CoreMedia | Developer Manual

21

title: 'subject',

type: 'text',

properties: {
required: true

}
}I
{
title: 'body',
type: 'wysiwyg'
}I
{
title: 'note',
type: 'wysiwyg'
I,

1
}I
specialProperties: {
condition: {
conditionable: false,
operators: {}

]

The table below describes the possible attributes that an action definition can have
at the first level.

Attribute Description
icon Type: String

Name of the icon to load. The name specified must match the
filename of the icon without the file extension.

type Type: String
Name of the field type.
properties Type: Object

Describes the properties of an action that can be edited in
the Form Editor on the right-hand side, under Properties. The
object properties of properties each correspond to individual
tabs. The following JSON snippet creates two tabs with the
name general and special, with a total of three properties: to,
subject and hint.

properties: {
general: [
{
title: 'to',
type: 'text',
properties: {
required: true

Formcentric for CoreMedia | Developer Manual 22

Attribute Description

}
}I
{
title: 'subject',
type: 'text',
properties: {
required: true
}
}
]l
special: [
{
title: 'hint',
type: 'text'
}

}

For a list of all available property types, please see
Section 6.1.5, “Input elements for element properties”.

specialProperties Type: Object

You use the specialProperties attribute to configure properties
that are evaluated by the Editor for internal functions.

specialProperties: { maxCount: 1 }

You use maxCount: <count> to specify how many times the
action can be used within a form.

6.1.4. Adding new element properties

Element properties are defined under the properties attribute of the parent form
element definition (see Section 6.1.1, “Adding a new form element”). You add a new
property to the form element (form field, action or validator) by specifying a JSON
object with the following structure.

{
title: '<attribute-name>',
type: '<field-type>',
value: 'DefaultValue',
properties: {

required: true

}

}

The following table describes the attributes of the configuration object.

Attribute Description

title Name used to store the field property in the form definition.

Formcentric for CoreMedia | Developer Manual 23

Attribute Description

type Property type. The available types are explained in the
following list.

value Optional specification of a default value.

properties Other type-specific configuration options

properties.required Specifies whether the property is a required field.

6.1.5. Input elements for element properties

The following table describes the configuration objects for the input elements of
the available element properties. You can use these when defining the various
form element properties. Please note that some types cannot be used with all form
elements.

Type Description
text Text field

Usage: all form elements

{
title: 'label’,
type: 'text'
}
number Number field that only allows numeric input.

Usage: all form elements

{
title: 'maxlength',
type: 'number',
properties: {

min: O,
max: null
¥

}

Also supports scientific number notation (e.g. 10e6).

Set properties.min and properties.max so define limits. Use
properties.min: null to reset an existing limit.

date Data selection element.

Usage: all form elements

{
title: 'from',
type: 'date'

Formcentric for CoreMedia | Developer Manual 24

Type Description
You can define a default value with vatlue . Uses the standard
JavaScript date format.

checkbox Checkbox

Usage: all form elements

{
title: 'requiredField',
type: 'checkbox'

}

dropdown List with fixed options from which the form author can select a
single entry.

Usage: all form elements

{
title: 'pattern',
type: 'dropdown',
properties: {
options: ['dd.MM.yyyy', 'yyyy-MM-dd']
¥
}

You can specify the selection options as a string array with
properties.options.

properties: {
options: [
{text: 'Value 1', value: 'one'},
{text: 'Example Two', value: two}
1
+

Options can also be defined as objects with value (value)
and text .

dropdown_format Drop-down list for field validators
Usage: Input element (inputField, passwordField, etc.)

During selection, the properties of the selected validator are
shown underneath the drop-down list.

The following example illustrates the definition of the email
validator.

title: 'format',
type: 'dropdown_format',
properties: {

options: {

Formcentric for CoreMedia | Developer Manual 25

Type Description

email: {
enabled: true,
fields: {
errormessage: {
title: 'errormessage',
type: 'text'

You can specify the selectable validators with
properties.options.

You can manage the validator properties with
properties.options["<validator-name>"].fields .

You use properties.options["<validator-
name>"].enabled=true Or properties.options["<validator-
name>"].enabled=false to activate the validator or to deacti-
vate it so that it is no longer selectable.

syntax Multi-line JavaScript input field with syntax highlighting.

Usage: all form elements

.{
title: 'script',
type: 'syntax',
value: 'function calculate() {};'
I
condition Input element for processing conditions.

Usage: condition

{
title: 'conditionContent',
type: 'condition',
properties: {
conditional_fields: [],
condition_conjunction: 'true',
condition: []
}
}
wysiwyg Multi-line text input field that allows formatting syntax to be
used.

Usage: all form elements

Formcentric for CoreMedia | Developer Manual

26

Type

element

dataSource

reference

multi_dropdown

Description

title: 'value',
type: 'wysiwyg'
}

Allows the selection of other elements in the same form.

Usage: all form elements

title: 'elements',
type: 'element'
}

Input element for a data source’s variable parameter list.

Usage: inputField, comboBox, radioGroup, checkboxGroup,
hiddenField

.{
title: 'datasource',
type: 'dataSource',
properties: {
datasource_params: []
}
}

Element for creating a dropzone for Content from the Core-
Media Studio.

Usage: all form elements

title: 'content',
type: 'reference'

F

List with fixed options from which the form author can select
multiple entries.

Usage: all form elements

{
title: 'numberType',
type: 'multi_dropdown',
properties: {
configuration_name: 'phoneNumberTypes'
}
}

You can define the selection options (as strings) with the
properties.options attribute.

Formcentric for CoreMedia | Developer Manual

27

Type

regeEx_dropdown

field_mapping

custom_mapping

Description

Alternatively, the values can also be taken from the paragraph
style sheet. In this case, specify the name of the corre-
sponding GOM element in the configuration_name attribute.

The configuration_name parameter specifies the name that is
used to store the value in the form definition.

Drop-down list for regular expressions.

Usage: regex

{
title: 'mailPattern',
type: 'regEx_dropdown',
properties: {
options: [
{
text: '~[+1{0,1}[0-9\\s-/1%$"',
label: 'phone'
+
{
text: '~[a-zA-ZA-y6a00A0B\\s-1*$",
label: 'characters'
}
1
}
}

Element for selecting a PDF template.
Usage: pdfAction

A PDF field from the template can then be assigned to the
form fields. If the fields are drop-down lists, their options can
be selected and assigned to one another.

Usage: pdfAction

{
title: 'field_mapping',
type: 'field_mapping',
value: '[]'

}

You can use this input element to design your own mapping
tables.

title: 'custom_table',
type: 'custom_mapping',
properties: {
mapping: [
{
type: 'dropdown',

Formcentric for CoreMedia | Developer Manual

28

Type Description

name: 'field',

placeholder: 'custom_table.field',

selectableFieldTypes: [
'inputField', 'radioGroup'

]

type: 'dropdown',

name: 'option',

placeholder: 'custom_table.option',
connectedField: 'field'

type: 'text',
name: 'otherValue',
placeholder: 'custom_table.otherValue'

type: 'dropdown',

name: 'attribut',

loadRemoteData: 'FS_ServiceField',
loadRemoteDataOptions: [

.{
name: 'connectedField',
key: 'task',
value: 'someDropdown'

},

{
name: 'connectedMapField_type',
key: 'type',
value: 'field'

}l

{
name: 'connectedMapField',
key: 'value',
value: 'field'

}I

1,

placeholder: 'custom_table.attribut',

type: 'dropdown',

name: ‘'attributoption',

placeholder: 'custom_table.attributoption',
loadRemoteData: 'FS_ServiceField',
connectedField: 'attribut',

Formcentric for CoreMedia | Developer Manual

29

Type Description

You define the columns in the properties.mapping attribute.
You use the type key to decide whether this is a selection field
(drop-down list) or an input field (text).

The name key sets the key for the export of the respective
fields in a row.

You use the placeholder key to define the placeholder for the
field.

You use the loadRemoteData key to decide, as you can with
a drop-down field, if the options should be provided by a
FirstSpirit service.

If the options are provided by a FirstSpirit service, you can use
the loadRemoteDataOptions key to pass additional attributes,
such as values of other fields on the element, for example, or
from the mapping itself. The following example creates this
object, so as to pass it with the loadRemoteData call. {task:
<ValueOfFieldsomeDropdown>, type: <Typeof FormElementS-
electedinField>, value: ‘<ValueofMappingDropdownField>'}

If you want to select existing form fields in a drop-down, you
can pass these by using the selectableFieldTypes key.

If you want to access nested options, from a form field or from
the options from loadRemoteData, then you can use connect-
edField and specify the name of a mapping field to access
these and make them available for selection.

6.1.6. Editing existing form elements

To modify an existing form element, you copy its full element definition from the
corresponding default configuration (fields_default.js or actions_default.js) into the
corresponding configuration file (fields_custom.js or actions_custom.;s).

You can then change or add to the element properties according to your requirements
as has been described above.

Please note: Changes made to the default configurations in the development work-
space have no effect on the Form Editor.

6.1.7. User interface internationalisation

For the internationalisation of the user interface, the language-dependent labels are
read from master language files. Out of the box, Formcentric supports the languages
English and German.

Formcentric for CoreMedia | Developer Manual

30

To modify or add labels for existing or new form elements, you need to extend
or modify the formeditor_de_custom.json and formeditor_en_custom.json language
files, which you will find in the development workspace.

Each label is stored in the language files with a unique translation ID. Typically, the
translation IDs of the element properties are each made up of the internal element
name and the name of the respective property. For the placeholder property of the
password field, the entry is as follows:

"passwordField.placeholder": "Placeholder"

You can add a label for a new element property by adding the corresponding entry
to each language file.

6.2. Extending the CAE integration

6.2.1. FreeMarker templates

As with all other document types, the output of the forms and form elements is handled
by FreeMarker templates within the CAE. As is the case with CoreMedia document
types, this involves each form element type being assigned its own template.

The example below shows the template InputNode.inputField.ftl for the single-line text
input field.

<@spring.bind fc.bind(self) />
<#assign hasErrors=spring.status.error />
<#assign restUrl=cm.getlLink(self, "rest", {"form": form,
"tokenName": fc.xsrfTokenName(),
"tokenValue": fc.xsrfTokenValue()})!"" />

<#tassign params=self.properties['datasource_params']!"{}"/>

<input id="${self.id}"
type="text"
name="${spring.status.expression!""}"
value="${spring.status.value!""}"
class="mwf-text ${self.properties['style_class']!""}"
${self.properties['readonly']?boolean?then("readonly", "")}
maxlength="${self.properties['maxlength']!""}"
data-mwf-id="${self.id}"
placeholder="${self.properties['placeholder']!""}"
data-mwf-datasource="{

"type" : "suggestion",
"yrl" : "${restUrl}",
"data" : {},

"params" : ${params}

P/

<@spring.showErrors separator="<p>" classOrStyle="mwf-error"/>

At the data level (model), all form elements are represented by an object of the
com.formcentric.model.xml.InputNode type. To access the properties name, label,

Formcentric for CoreMedia | Developer Manual

31

value and children, you can use the corresponding getter methods on the InputNode
bean. Access to all other properties is performed using the properties map from the
InputNode bean.

The following table shows you all the form element types and their properties. The
properties shown in square brackets must be read from the properties map.

Element Properties

form name, [style_class, next_label, submit_label, cancel_label, script,
save_state]

inputField name, label, value, [hint, placeholder, style_class, readonly,
maxlength, datasource, datasource_params]

textArea name, label, value, [hint, placeholder, style_class, readonly,
maxlength, rows, cols]

passwordField name, label, [hint, placeholder, style_class]
button name, label, [hint, style_class, onclick]

checkBoxGroup name, label, children, [hint, style_class, datasource, dynamic,
datasource_params]

comboBox name, label, value, children, [hint, style_class, datasource,
dynamic, datasource_params]

pageBreak name, label, [style_class, condition, style_class, next_label,
back_label, script]

paragraph name, value, [bold, italic, style_class]

captcha name, label, [hint]

radioGroup name, label, children, [hint, style_class, datasource, dynamic,
datasource_params]

summary label, [style_class, elements]

hiddenField name, value

fileUpload name, [multiple, hint, style_class, auto_upload]

condition [condition, condition_conjunction, conditional_fields]

pageCondition [condition, condition_conjunction, next_page, script]
layout label, [layout]
calculatedValue name, label, [script, visible, clientside, style_class]

mailAction [subject, to, cc, bec, from, body, format, note, replyto,
send_hidden_fields, condition, condition_conjunction]

datastoreAction [note, condition, condition_conjunction]

redirectAction [note, condition, condition_execute, condition_conjunction, url,
content, delay]

Formcentric for CoreMedia | Developer Manual 32

Element Properties

webhookAction [note, condition, condition_execute, condition_conjunction, url,
fields, url_parameters, custom_headers, content_type]

sequenceAction —
In addition to the InputNode beans described above, the system passes other objects

in the request to the form templates. The following table gives you an overview of all
objects passed.

Parameter name Type Description
self com.formcentric.contentbeans. Bean for the current
WebForm form document or

com.formcentric.model.xml.InputNode form element

pageElements java.util.List List with the
elements of the
current form page

pageCount java.lang.Integer Number of form
pages
form com.formcentric.contentbeans. Form definition
WebForm
currentPage java.lang.Integer Page number of the

current form page

currentPageN- com.formcentric.model.xml.InputNode Current form page

ode bean

formdata java.util.Map Map containing the
form data entered by
the user

FreeMarker functions and macros

Formcentric provides you with a FreeMarker library that contains specialised functions
for displaying the forms.

To utilise these functions, insert the following instruction into the FreeMarker
templates:

<#import "/lib/formcentric.com/formcentric.ftl" as fc>

The following section gives you a description of the functions contained in this library.

fc.forEachPageElement

List function that contains the elements on the current page.

forEachPageElement(boolean layoutFacets, boolean removeEmptyFacets,

Formcentric for CoreMedia | Developer Manual 33

final String exclude, final String include)

Parameter Description

layoutFacets If this value is set to “true”, the elements will be split across
layoutFacets (optional).

removeEmpty- Specifies whether empty layouts should be ignored when

Facets creating the list (optional).
Default value: false

exclude Comma-separated list of the element types that should be
ignored when creating the list. If nothing is specified here,
then all element types — with the exception of excluded types
— are included (optional).

include Comma-separated list of element types that should be
included when creating the list (optional).

<#list fc.forEachPageElement(true, false, "condition", "") as layout>

<ul class="${layout.properties['layout']!""}">

<#if layout_index == 0 && currentPage == 0 && self.label?has_content>
<1li class="mwf-field"><h3>${self.label!""}</h3></1i>

</#if>

<#list layout.items as input>
<@cm.include self=input view=input.type />

</#list>

</#list>

fc.forEachPage

List function that returns a list of the collected pages.

forEachPage(final boolean compact)

Parameter

compact

fc.summary

Description

Specifies whether form pages with the same title should be
consolidated together (optional).

Default value: false

Function that returns a list of all elements as a com.formcentric.model.InputBean for
the form. This can also be used to query the data entered by the user.

This can be used to query the following properties:

Formcentric for CoreMedia | Developer Manual

34

name
label
type
object
value

valuelLabels

page
pagelLabe
layout

input

Form element name

Form element label.

Form element type.

Form element value bean.

String representation of the value bean.

String array containing the labels of the options chosen in the
selection field (comboBox, radioGroup, checkboxGroup). If the
associated input element is not a selection, then the value of
the element is returned in the array.

Number of the page on which the element is located.
Label of the page on which the element is located.
Name of the layout in which the element is located.

InputNode of the element.

summary(InputNode self, String elements,
final String include, final String exclude,
final boolean hideEmptyFields, final String excludeIfEmpty)

Parameter

self

elements

include

exclude

hideEmptyFields

excludeEmpty-
Fields

Description

InputNode of a form element.

If this value is set, then the iteration is interrupted at the speci-
fied element.

Comma-separated list containing the names of the form
elements that should be shown in the summary. If this
attribute contains a value, then the attribute self is ignored
(optional).

Comma-separated list of element types that should be consid-
ered during iteration. If nothing is specified here, then all
element types — with the exception of excluded types — are
included (optional).

Comma-separated list of element types that should be ignored
during iteration (optional).

Default value: button, hiddenField, condition, pageCondition,
pagebreak, captcha, passwordField

Specifies that all empty fields should be ignored.

Default value: false

Specifies that empty fields should be ignored (optional).

Default value: false

Formcentric for CoreMedia | Developer Manual

35

<#list fc.summary(self, self.getPropertyAsString('elements'),
self.getPropertyAsBoolean('hide_empty_fields', false)) as item>

<tr>
<#if item.input.type == "paragraph">
<td colspan="2"><@markdown>${item.input.value}</@markdown></td>
<#else>
<td>${item.label?has_content?then(item.label, item.name!"")}</td>
<td>${(item.valueLabels![]1)?join(", ")}</td>
</#Hif>
</tr>
</#list>
fc.captcha

Template that you can use to generate a captcha image.

Attribute Description

url URL of the captcha servlet.

id ID of the captcha InputNode.

linkClass CSS class(es) that is/are applied to the link to the captcha

image (optional).
Default value: ""

imgClass CSS class(es) that is/are applied to the captcha image
(optional).

Default value: "

title The title attribute for the captcha image (optional).
Default value: ""

alt The alt attribute for the captcha image (optional).
Default value: Captcha

<#tassign captchaUrl=cm.getLink(self, "captcha")!"" />

<@fc.captcha url=captchalrl id=self.id linkClass="css-class__link"
imgClass="css-class__img" title="A title" alt="Captcha" />

fc.ifCaptcha

Boolean function that evaluates whether the captcha name has not been entered
correctly.

Parameter Description

name Name of the captcha element.

<#if fc.ifCaptcha(self.name!"")>
<#assign captchaUrl=cm.getLink(self, "captcha")!"" />

<@fc.captcha url=captchalrl id=self.id />
</#Hif>

Formcentric for CoreMedia | Developer Manual

36

fc.getStandardButton

Function that supplies the standard form button determined by the “buttonType”
attribute.

Parameter Description

buttonType Standard button type. Can have the following values:

_next Button that takes the user to the next page in the
form.

_back Button that takes the user to the previous page in
the form.

_cancel Button that cancels form data entry.
_finish Button that submits the form.

_exit Button that can be used to exit from the form.

<#assign finishButton=fc.getStandardButton("_finish") />
<li data-mwf-container="${finishButton.id}" class="mwf-button mwf-next">
<input type="button" value="${submitLabel}"
data-mwf-submit='{"type":"finish",
"query": "navigationId=${cmpage.navigation.contentId}"}'/>
</1i>

fc.valueOut

Function that can be used to output the current value of a form field.

valueOut(String name, boolean preferLabel)

Parameter Description
name Form field name.
preferLabel Specifies that the value's label should be output instead of the

value itself (optional).

${fc.valueOut(self.name!"", true)!""}

fc.conditions

Function with which the JavaScript definitions can be generated for conditional
elements. Place this function at the end of the form template.

<#tassign conditions=fc.conditions() />

fc.calculatedValues

Function that generates the JSON definitions for the calculated values.

Formcentric for CoreMedia | Developer Manual

<#tassign calculatedValues=fc.calculatedValues() />

fc.markdown

Macro that can be used to output a value interpreted using markdown. This macro

can handle both a passed value (see “value” parameter) or a body.

Parameter Description

value Value to be interpreted using markdown (optional).

inline Specifies whether the output HTML should be restricted to
inline elements (optional).
Default value: false

<@fc.markdown value=self.value!"" inline=false />

<#-- or -->

<@fc.markdown inline=false>${self.value!""}</@fc.markdown>

fc.vars
Macro that can be used to replace variables from the form context in the output.

Parameter Description
map Map with the variable values (key, value).

Please note: A map with the form variables (formVariables)

and a map with the form values (formdata) is passed by
default in the page scope.

<@fc.vars map=formdata>${action.properties['note']!""}</@fc.vars>
fc.bind
Function that returns the path to which the node is bound.

Parameter Description

node InputNode whose path is being queried.

<@spring.bind fc.bind(self) />
fc.encodeUrl
Function that encodes the URL passed in UTF-8.

Parameter Description

url URL that is to be encoded.

Formcentric for CoreMedia | Developer Manual

38

fc.hasValidator

Function that checks whether the validator specified by the name parameter is present
in the InputNode node.

Parameter Description
node InputNode that is to be evaluated.
name Name of the validator.

fc.validatorByName

Function that returns the validator specified in the name parameter of the InputNode
node.

Parameter Description
node InputNode that is to be evaluated.
name Name of the validator.

fc.elementByName

Function that returns the InputNode specified in the name parameter for the form form.

Parameter Description
form Form that contains the InputNode.
name Name of the element.

Security library

Formcentric includes a security library for the generation and output of XSRF tokens
(see Section 5.2.4, “Web security”). This security library is also utilised by the inte-
gration of the FreeMarker functions.

The FreeMarker functions that are included are described below.

fc.xsrfToken

Macro that generates a hidden form field with an XSRF token.

<@fc.xsrfToken />

fc.xsrfTokenName

Function that generates an xsrfTokenName from the form ID.

Parameter Description

formld ID of the form for which the token should be generated. If this
parameter is empty, the form ID passed in the request is used
(optional).

Formcentric for CoreMedia | Developer Manual 39

<#tassign restUrl=cm.getlLink(self, "rest", {"form": form,
"tokenName": fc.xsrfTokenName(), "tokenValue": fc.xsrfTokenValue()})!""/>

fc.xsrfTokenName

Function that generates an xsrfTokenValue from the form ID.

Parameter Description

formld ID of the form for which the token should be generated. If this
parameter is empty, the form ID passed in the request is used
(optional).

<#assign restUrl=cm.getlLink(self, "rest", {"form": form,
"tokenName": fc.xsrfTokenName(), "tokenValue": fc.xsrfTokenValue()})!""/>

6.2.2. Implementing an action

As already described, the business logic for form data processing is encapsulated by
actions in the web application. From a technical perspective, these are classes that
implement the com.formcentric.actions.Action interface. Additional business beans
can be injected into an action via Spring. In this way, data access objects (DAOs) can
be made available in order to access external databases, for example. The actions
are injected into the form controller via Spring when the application starts. For this to
work, the action implementation must be registered as a Spring bean. This might be
achieved by either annotating it directly as a Spring component and enabling compo-
nent scanning, or by declaring it as a bean in a configuration class.

Variable action parameters, which must be entered by the form author when creating
the form (such as the target address for the mail action), are passed to the action
implementation via the properties map of the ActionNode bean.

The following example shows you how you can implement and configure the Custom-
Action described in section Section 6.1.3, “Adding a new action”.
public class CustomAction extends BaseAction {
public static final String PROP_CUSTOM = "anyCustomActionPropertyName";
@0verride
public ModelAndView execute(ExecutionContext<WebForm> context, Map<String,

Object> formData) throws Exception {

WebForm formDefinition = context.getFormDefinition();
ActionNode action = context.getAction();

String customParam = action.getPropertyAsString(PROP_CUSTOM);

// Business-Logic

Formcentric for CoreMedia | Developer Manual

40

return HandlerHelper.createModelWithView(formDefinition, "success");

F

@0verride

public boolean isExecutable(ExecutionContext<WebForm> context,
Map<String, Object> formData) throws Exception {
return true;

F

@0verride
public String name() {
return "customAction";
}
}

When called via the execute method, the action is given all the available data. In
addition to the actual form data, ExecutionContext passes the form definition, the
action definition, the form variables (see Section 6.2.3, “Adding variables for pre-filling
form fields”) and the request object. The parameters map contains only the values of
the visible form elements. Access to all form data is provided by calling the method
getRawFormData() on the ExecutionContext bean.

The execute method must return an object of the ModelAndView type. This is used in
order to present the results page, as shown to the user after data has been submitted.

Typically, the ModelAndView object is generated with the form bean and a specialised
view (such as success).

In addition, however, there is also the option of redirecting the request to another
page. In this case, the ModelAndView object can be generated as follows:

ModelAndView mv = HandlerHelper.redirectTo(renderBean, viewName);

The renderBean object and the view name can be generated by the specialised busi-
ness logic of the action implementation.

In some application scenarios, errors in the input data are discovered only during
processing by the associated Backend. In this case, the user should not be presented
with the results page but should be shown the form again, along with an error
message. To achieve this, the action — in the same way as with validators — should
create an error on the Errors bean passed in the ExecutionContext.

public ModelAndView execute(ExecutionContext<WebForm> context, Map<String,
Object> formData) {

context.getErrors().rejectValue("username", DUPLICATE_USER_ERROR,
"That username is already being used.");

return null;

Formcentric for CoreMedia | Developer Manual

41

6.2.3. Adding variables for pre-filling form fields

To pre-fill form fields, the form author can make use of a range of predefined variables.
Standard variables made available to the form author include date, time, serverDate,
serverTime, clientDate, clientTime, timezone, url, language, ip, remoteUser, principal,
userAgent and referer.

To provide custom variables, you need to override the method getVariables() on the
FormCommandBean.

public class CustomFormCommandBean extends DefaultFormCommandBean {

@0verride
protected Map<String, Object> getVariables(HttpServletRequest request,
WebForm formDefinition) {

Map<String, Object> variables =
super.getVariables(request, formDefinition);

// Add your variables to the result map

return variables;
}
+

To instantiate the new CustomFormCommandBean, you will also need to adapt or
replace the declaration of the the DefaultFormCommandBeanFactory found in the
FormcentricControllersConfig.java.

public class CustomCommandBeanFactory extends DefaultFormCommandBeanFactory
{

@0verride

public CustomFormCommandBean createBeanFor(WebForm formDefinition) {

CustomFormCommandBean commandBean = new CustomFormCommandBean();
initCommandBean(commandBean, formDefinition);

return commandBean;

Replace the DefaultFormCommandBeanFactory in the Spring configuration
FormcentricControllersConfig.java with the CustomCommandBeanFactory:

@Bean

public CustomCommandBeanFactory commandBeanFactory(
FormComponentRegistry<Action> actionRegistry,
FormComponentRegistry<FormValidator> validatorRegistry,
BaseFormStateStore formStateStore,
Mailer mailer) {

CustomCommandBeanFactory formCommandBeanFactory =

new CustomCommandBeanFactory();

Formcentric for CoreMedia | Developer Manual 42

The form fields are initialised with the predefined pre-filled values once only,
when the form is called for the first time. This also replaces the variables
with their values. Accordingly, subsequent changes to variable values are
not applied to an already-initialised form.

6.2.4. Implementing a REST service

Formcentric includes a REST interface, which you can use to fill drop-down lists
or input fields at runtime with data from external systems. The data concerned can
be static, dynamic or specific to the user. All the interface’s specialised functions
are encapsulated in classes of the com.formcentric.rest. RestService type. By imple-
menting your own REST service, you can extend the interface to include additional
functionality. The following example shows you a REST service that generates a map
with static key/value pairs.

public class ExampleRestService extends BaseRestService {

@0verride
public Object invoke(ServiceContext<WebForm> context, Map<String,
Object> formData, Map<String, Object> data) {

String myCustomParam = context.getConfigParameterMap()
.get("myCustomParam");

HashMap<String, String> data = new HashMap<String, String>();

// fill the map

data.put("keyl", "valuel");
data.put("key2", "value2");
data.put("key3", "value3");

return data;

By calling the invoke method, the REST service is passed both the ServiceContext
as well as the user input already sent (formDataparameter) and the user input not yet
sent (data parameter). This enables you to react directly to user input, regardless of
whether or not this input has already been sent.

The ServiceContext gives you access to the form definition, the input element, the
configuration parameters for the REST service and the request object.

Register the REST service as Spring bean. This might be achieved by either anno-
tating it directly as a Spring component and enabling component scanning, or by
declaring it as a bean in a configuration class.

The service is accessed via the URL:

Formcentric for CoreMedia | Developer Manual

43

<context-path>/servlet/formcentric-rest?
_service=Example&
_id=<Dokument-ID>&
_input=<Input-Name>

The following JSON string is returned as the response to this call:

{
"k":"keyl",
"v'":"valuel",
"i":"mwf6aabBbb24033",
"h":"8d0c3e13950d86c1a7383f06610578c"
}l
{
"K":"key2",
"v'":"value2",
"i":"mwf@6a7a0930d37"
"h":"d22d445101243a5F616cFd64cT765e399"
}l
{
"k":"key3",
"v'":"value3d",
"i":"mwfl674ffbBal21",
"h":"cBadlfa77bblb79ca757eelffce9 416"
s

To prevent manipulation of the JSON data so transmitted, the individual key/value
pairs are secured using an additional hash value that is validated on the server during
form submission.

This security mechanism means that no calls may be made to external REST services,
since their data does not contain the required hash values. If you need to access
external services, however, you can implement your own proxy REST service, which
in turn accesses the external REST service.

The REST service calls within FreeMarker templates are made using the HTML
attribute data-mwf-datasource. In the attribute value, you must specify a JSON object
that contains the URL of the REST service, the usage type (checkbox, radio, selection
or suggestion) and any other parameters.

By default, you can specify a REST service for the following input elements:

inputField:

<#tassign restUrl=cm.getlLink(self, "rest", {"form": form,
"tokenName": fc.xsrfTokenName(),
"tokenValue": fc.xsrfTokenValue(Q)})!"" />

<#assign params=self.properties['datasource_params']!"{}"/>

<input id="${self.id}"

Formcentric for CoreMedia | Developer Manual

data-mwf-id="${self.id}"
data-mwf-datasource="'{

"type" : "suggestion",
"url" : "${restUrl}",
"data" : {},
"params" : ${params}
/>
hiddenField:

<#assign restUrl=cm.getlLink(self, "rest", {"form": form,
"tokenName": fc.xsrfTokenName(),
"tokenValue": fc.xsrfTokenValue(Q)})!"" />

<#assign params=self.properties['datasource_params']!"{}"/>

<input type="hidden"

data-mwf-id="${self.id}"
data-mwf-datasource="{

"type" : "hidden",
"name" : "${self.name!""}",
"url" : "${restUrl}",
"data" : {},
"params" : ${params}

/s

comboBox:

<#assign restUrl=cm.getlLink(self, "rest", {"form": form,
"tokenName": fc.xsrfTokenName(),
"tokenValue": fc.xsrfTokenValue()})!"" />

<#tassign userValue=fc.valueOut(self.name!"")!""/>

<#tassign params=self.properties['datasource_params']!"{}"/>

<select data-mwf-id="${self.id}"
data-mwf-datasource="'{

"type" : "selection",
"url" : "${restUrl}",
"preselected" : "${uservValuel}",
"data" : {},
"params" : ${params}
>
</select>
checkBoxGroup:

<#assign restUrl=cm.getlLink(self, "rest", {"form": form,
"tokenName": fc.xsrfTokenName(),
"tokenValue": fc.xsrfTokenValue(Q)})!"" />

<#tassign userValue=fc.valueOut(self.name!"")!""/>

<#assign params=self.properties['datasource_params']!"{}"/>

<fieldset data-mwf-id="${self.id}"

Formcentric for CoreMedia | Developer Manual 45

data-mwf-datasource="{

"type" : "checkbox",
"name" : "${self.name!""}",
"url" : "${restUrl}",
"preselected" : "${userValuel}",
"data" : {},
"params" : ${params}
>
</fieldset>
radioGroup:

<#tassign restUrl=cm.getlLink(self, "rest", {"form": form,
"tokenName": fc.xsrfTokenName(),
"tokenValue": fc.xsrfTokenValue()})!"" />

<#tassign userValue=fc.valueOut(self.name)!""/>

<#tassign params=self.properties['datasource_params']!"{}"/>

<fieldset data-mwf-id="${self.id}"
data-mwf-datasource="{

"type" : "radio",
"name" : "${self.name!""}",
"yrl" : "${restUrl}",
"preselected" : "${userValuel}",
"data" : {},
"params" : ${params}
}r>
</fieldset>

Since the double quotation mark must be used within the JSON string, you
must use the single quotation mark for the HTML attribute.

As described previously, both the form input that has been sent and the form input
not yet sent is available to you within the REST service. As one example of how to
use this function, you could implement a REST service that takes a postcode entered
by the user and returns a drop-down list of locations matching the postcode.

In this example, it would be advisable to update the drop-down list automatically
if the user changes the postcode, since other locations may be referenced by the
changed postcode. This can be achieved by using the parameter dependsOn. In the
form editing interface, this can be entered into the parameter list of a REST service
(see also section 3.5. in the Studio User Manual). The value to be entered here must
specify the name of the input element on which the result of the selected REST service
depends. Every change made to one of the input elements specified results in another
call to the REST service.

—l REST services should always return an empty Map instead of null when no
data is available.

Formcentric for CoreMedia | Developer Manual

46

6.2.5. JavaScript

Out of the box, Formcentric includes and requires the JavaScript dependencies as
described below.

jQuery (npm package)

The Formcentric integration relies on the jQuery library and includes it as a depen-
dency.

@formcentric/jquery-file-upload (npm package)

For file uploading, Formcentric uses a forked version of the blueimp-file-upload plugin.
Depending on the browser used, files are either transferred using AJAX or within a
hidden iframe.

jaguery-autocomplete.js (bundled)

This JavaScript contains a jQuery plugin that can be used to add autocomplete
functionality to input fields. Values for the autocomplete function are loaded asynchro-
nously from the specified REST service.

jguery-format.js (bundled)

This JavaScript contains a jQuery plugin that enables the formatting or analysis of
dates and numbers. Note that this is a JavaScript alternative to the Java classes
SimpleDateFormat and NumberFormat.

JSON (npm package)

Formcentric uses the native JSON object supplied by modern browsers to parse and
construct JSON objects. For older browsers that do not support the JSON obiject, the
object is provided by this JavaScript.

jguery-webforms.js

This JavaScript contains a jQuery plugin that provides the JavaScript functions
required by Formcentric. You can specify the plugin’s variable configuration parame-
ters as shown below on the form tag in the FreeMarker template WebForm.ajax.ftl.

<#assign conditions=fc.conditions() />
<#assign calculatedValues=fc.calculatedValues() />

<form method="post" ...

data-mwf-form="${self.shortId}"

data-mwf-settings="'{
"yrl":"${targetUrl}",
"statisticsUrl":"${statisticsurl!""}",
"query":"navigationId=${cmpage.navigation.contentId}",
"calculatedValues" : ${calculatedValues},
"conditions" : ${conditions}

Formcentric for CoreMedia | Developer Manual

47

Configuration is completed by specifying a JSON string in the attribute data-mwf-

settings, which can contain the following parameters.

Parameter

conditions

calculatedValues

appendUrlVars

createOption

createRadio

createCheckBox

createUploadFileRow

createDownload-

FileRow

updateCalculatedValue

updateFormValue

Description
Type: JSON

JSON definition of the client-side conditions to be evalu-
ated.

Type: JSON

JSON definition of the client-side calculated values to be
calculated.

Type: Boolean

You use this parameter to specify that the URL para-
meters in the host page will be appended to the AJAX
request sent to the form controller.

Type: Function($form, entry, selected)

Function that creates an option element in a dynamic
drop-down list (comboBox).

Type: Function($form, name, entry, checked)

Function that creates a radio button in a dynamic Radio
Button Select field (radioGroup).

Type: Function($form, name, entry, checked)

Function that creates a check box button in a dynamic
Check Box Select field (checkBoxGroup).

Type: Function(Object $form, Object attr, file)

This function creates a new entry in the file list of the File-
Upload element before the file is uploaded.

Type: Function(Object $form, Object attr, file)

This function creates a new entry in the file list of the File-
Upload element after the file has been uploaded.

Type: Function($form, id, value)

Function that updates the display of a calculatedValue
when this has been re-calculated.

Type: Function($form, $elem, name, |)

This function updates the value of a form field in the
summary, if this value has been entered or changed by
the user. If the corresponding form field is a selection (list)
field, the labels of the options selected are passed in the /
parameter. Otherwise, the text value entered is passed.

Formcentric for CoreMedia | Developer Manual

48

Parameter

onFillDropdown

onFillSelection

onlnit

onSubmit

onSuccess

onAjaxError

operations.visible

operations.hidden

operations.alterable

operations.readonly

operations.enabled

Description
Type: Function(Object $form, Object $elem))

Callback function that is called after a dynamic dropdown
list has been filled.

Type: Function(Object $form, Object $elem))

Callback function that is called after a dynamic drop-down
list has been filled.

Type: Function(Object $form)

Callback function that is called after the jQuery plugin has
been initialised. Use this function to perform your own
initialisations.

Type: Function(Object $form, String url, String query)
Callback function that is called when the form is

submitted. The form is submitted only if the function
returns the Boolean value true.

Type: Function(Object $form, Object data, String status,
Object jgXHR)

Callback function that is called after the form has been
submitted successfully.

Type: Function(jgXHR jgXHR, String status, String error)

Function that is called when an error occurs during an
AJAX request. As standard, this function creates an entry
in the browser’s error log.

Type: Function(Object $form, Object field)

Function used to make input fields visible.

Type: Function(Object $form, Object field)

Function used to hide input fields.

Type: Function(Object $form, Object field)

Function used to change input fields from write-protected
to editable.

Type: Function(Object $form, Object field)

Function used to change input fields from editable to
write-protected.

Type: Function(Object $form, Object field)

Function used to change input fields from deactivated to
activated.

Formcentric for CoreMedia | Developer Manual

49

Parameter Description

operations.disabled Type: Function(Object $form, Object field)

Function used to change input fields from activated to
deactivated.

operations.optional Type: Function(Object $form, Object field)

Function used to mark input fields as optional.

operations.mandatory Type: Function(Object $form, Object field)

Function used to mark input fields as mandatory fields.

The default implementations of the JavaScript functions listed can be found in the
JavaScript jquery-webforms.js.

In the following example, the operations.mandatory function is replaced by a modified
version.

<#assign conditions=fc.conditions() />
<#tassign calculatedValues=fc.calculatedValues() />

<form method="post" ...
data-mwf-form="${self.shortId}"
data-mwf-settings="'{
"yrl":"${targetUr1}",
"statisticsUrl":"${statisticsurl!""}",
"calculatedValues" : ${calculatedValues},
"conditions" : ${conditions},
"operations": {
"mandatory": "function ($form, field) {\r\n
var $label = $form.find('label[for=\""' + field.input + '\"]1'),\r\n
$span = $('').attr('class', 'mwf-required').text('*');\r\n
$label.children('span.mwf-required').remove();\r\n
$label.append($span);};
}Il
+
}r>

You also have the option of specifying the configuration parameters listed above in
a separate JavaScript file. This is the easier and preferred approach when speci-
fying JavaScript functions in particular, since it avoids the error-prone masking of the
reserved characters. An example file jquery-webforms-custom.js using this approach
is provided.

(function($) {
$.fn.webforms.defaults().operations.mandatory =
function($form, field) {
var $label = $form.find('label[for="" + field.input + '"1'),
$span = $('').attr('class', 'mwf-required').text('*x');

Formcentric for CoreMedia | Developer Manual

50

$label.children('span.mwf-required').remove();
$label.append($span);
I
}) (3Query);

Event reference

The Formcentric jQuery plugin makes a series of events available that enable you to
respond to scenarios that match the various events. The corresponding event handler
must be registered on the document object.

Detailed kinds of event-dependent information such as the associated form element,
for example, are passed to the event handler in the event.details event object.

document.addEventListener("mwf-fill-selection",
function(event) {
console.log(event.detail.$form);
console.log(event.detail.$elem);

);

The following table describes the events that you can monitor and program specific
responses to:

Event hame Detailed information Is sent when
mwf-ajax-finished $dest the function mwfAjaxReplace has
been executed successfully.
mwf-ajax-error $dest, jgXHR, textS- the asynchronous call (AJAX call)
tatus, errorThrown has an error.
mwf-fill-dropdown $form, $elem a drop-down list has been filled

by a data source.

mwf-fill-selection $form, $elem a radio button or check box
select field has been filled by a
data source.

mwf-fill-hidden $form, $elem a hidden field has been filled by a
data source.
mwf-sugges- $form, $elem, id, selec- an autocomplete item has been
tion-selected tion, params selected for an input field.
mwf-value-changed $form, $elem, name, the value of a form field has
value changed.
mwf-form-replaced $form, id the form has been submitted.

Formcentric for CoreMedia | Developer Manual

6.3. Extending the server application

The Formcentric Headless Server is a Spring Boot application that provides a REST
interface with various end points for form processing. For browser-side connectivity
to the Formcentric Headless Server, a ready-to-use React client is provided, which
you can also configure to suit your requirements (see also Section 6.4, “Formcentric
Client").

The following section describes how to extend the functionality of the Formcen-
tric Headless Server. Please note: some of the names of the framework classes
are the same as those from the CAE integration but are located outside of the
com.formcentric.headless.rest package.

6.3.1. Implementing an action

Similarly to the CAE integration, the Formcentric server also uses actions that encap-
sulate the business logic for the form data processing. These classes implement
the interface com.formcentric.headless.actions.Action . You can then integrate any
backend systems you need to by developing a custom action. These actions are
Spring beans: as a result, configuration parameters can be passed to the action by
using the standard Spring mechanisms. The following example shows you how to
implement and configure a CustomAction.

import com.formcentric.headless.actions.*;
public class CustomAction extends BaseAction {
public static final String PROP_CUSTOM = "anyCustomActionPropertyName";

@0verride
public ActionResult execute(ExecutionContext context, Map<String,
Object> formData) throws ActionException {

WebForm formDefinition = context.getFormDefinition();
ActionNode action = context.getAction();

String customParam = action.getPropertyAsString(PROP_CUSTOM);

// Business-Logic

ActionResult actionResult = new ActionResult();
actionResult.setView("success");
return actionResult;

@0verride

public boolean isExecutable(ExecutionContext context,
Map<String, Object> formValues) throws ActionException;
return true;

F

Formcentric for CoreMedia | Developer Manual

52

public String name() {
return "customAction";

I
I

6.3.2. Adding variables for pre-filling form fields

Alongside the predefined variables, you also have the option of adding your own
variables for pre-filling form fields. To do this, register a Spring bean of the Vari-
ablesService type in the application context of the Headless Server.

import com.formcentric.headless.services.VariablesService;
import com.formcentric.headless.model.WebForm;
import org.springframework.stereotype.Service;
import jakarta.servlet.http.HttpServletRequest;

@Service
public class CustomVariablesService implements VariablesService {
@0verride
public final Map<String, Object> getVariables(HttpServletRequest request,
WebForm formDefinition) {

Map<String, Object> vars = new HashMap<>();

// Add custom variables to the variables Map
vars.put("custom_var", "custom_value");
return vars;

This VariablesService bean is a Spring bean, which means you can also access
external systems or services when creating the variables.

In some application scenarios, you will need to pre-fill form fields with values from the
web page or client application into which the form is embedded. For this use case, it
is sufficient to specify the variables in the data attribute data-fc-vars from the div tag
with which the form is associated.

<div
data-fc-id="1249010"

data-fc-vars='{"custom_var":"custom_value"}'
></div>
6.3.3. Implementing a REST service

All of the REST services described in section Section 6.2.4, “Implementing a REST
service” are also available to you when deploying the Formcentric Headless Server.
The following example shows you a REST service that generates a map with static
key/value pairs.

import com.formcentric.headless.rest.*;

Formcentric for CoreMedia | Developer Manual

53

@Bean
public class ExampleRestService extends BaseRestService {

public Object invoke(ServiceContext context, Map<String, Object> formData)
@0verride
public Object invoke(ServiceContext<WebForm> context, Map<String,
Object> formData, Map<String, Object> data) {

String myCustomParam = context.getConfigParameterMap()
.get("myCustomParam");

HashMap<String, String> data = new HashMap<String, String>();

// fill the map

data.put("keyl", "valuel");
data.put("key2", "value2");
data.put("key3", "value3");

return data;

F

@0verride
public String name() {
return "exampleRestService";
}
}

By calling the invoke method, the RestService is passed both the ServiceContext and
the current user input (formData parameter). This lets you respond directly to user
input.

The ServiceContext gives you access to the form definition, the input element, the
configuration parameters for the RestService and the request object.

All form elements, which also includes the REST services, must have their own unique
name with which they can be referenced within the form definition. The name is deter-
mined when starting the application by calling the method name() .

Spring uses the @Bean annotation to instantiate your REST service automatically
and register it using the specified name.

6.4. Formcentric Client

To present Formcentric forms in the browser, the NPM module @formcentric/client
(https://www.npmjs.com/package/@formcentric/client) is required. This applies both
for projects based on HTML only plus JavaScript as well as for projects that utilise
frontend frameworks or frontend libraries.

The installed package includes various variants of modules for a wide range of appli-
cations. The files required are installed using NPM, which itself has no dependencies,
however, and can also be used without any bundlers.

Formcentric for CoreMedia | Developer Manual

54

For installation, execute the following command:
npm install @formcentric/client

Or alternatively:

pnpm install @formcentric/client

The following items must be present in order for a form to be displayed correctly:
1. A div tag with an fc-id data attribute, into which the form will be rendered.

2. A loaded theme, consisting of CSS, templates and CSS custom properties, if these
are being used in the CSS file.

3. To be able to be embedded as a script tag, formapp.js must also be accessible.

<div
data-fc-id="1249010"
data-fc-formapp-url="/example-url/formapp.js"
data-fc-theme-url="/example-url/formcentric.css"
data-fc-template-url="/example-url/formcentric_templates.js"
data-fc-theme-variable-url="/example-url/formcentric.json"
data-fc-form-definition="K82AC1xH1YpNGtKt ... ffUuAm4aOyEQsC9"
data-fc-refs="ffUuAm40yEQsSC9 ... 2ACLxH1YpNGtKt"
data-fc-vars="'{}"
data-fc-params='{"}"'
data-fc-data-url="'https://example-url-to-formcentric-headless-server.com'
></div>

<script
src="./formcentric.js"
defer

></script>

6.4.1. Theme

The theme CSS must be loaded to ensure that the form can be displayed correctly.
This can be achieved by using a link tag in the HTML head and the use of custom
properties. If available, these must be set in the HTML code.

Each input field has its own template, which can be modified. These templates
are defined on the Window object in a JS file called formcentric_templates.js. This
ensures that they can be found later when rendering the form. The templates are
required in order to present the form correctly (see Section 6.4.3, “Templates”).

6.4.2. Initialisation

To start the client, either the script formcentric.js can be loaded or, at a later point in
time after this has been loaded, window.formcentric.initFormcentric() can be called.
You use the data attribute fc-data-url to configure the URL for accessing the Form-
centric Headless Server.

Formcentric for CoreMedia | Developer Manual

55

6.4.3. Templates

Templates always consist of a function whose return value is used by the Formcen-
tric Client to render HTML code. To achieve this, the Formcentric Client passes two
parameters (html and props) to a template function. The exact structure and the para-
meters used will depend on the specific usage of the template.

html: A template literal tag, which is used to render HTML code. This parameter
enables the embedding of HTML into the template’s JavaScript code.

props: An object that contains the properties of the form field. These consist of calcu-
lated values from the Formcentric Client as well as field data supplied by the Editor.
The specific properties vary according to the form field.

The final HTML is created from a combination of static HTML code and the values
from the props properties. This can be achieved by interpolation, by combining strings
together or by using functions to render HTML. The resulting HTML created is then
passed back as a template function return value to the Formcentric Client, which then
renders it in the DOM.

O All template functions can also be processed asynchronously by the Form-
centric Client as a promise.

Template properties

The Formcentric Client passes template properties to the corresponding template
function as parameters (props). These include and information required for the
presentation and behaviour of the respective form fields.

The following properties as passed to the templates:

Property Description
key The element’s unique ID.
oninput (event: InputEvent) => void

Updates the field value.

onfocus (event: FocusEvent) => void

If present, returns any validation errors for the field.

onclick A function that evaluates the onClick functions defined by
the editor.

fieldSuccess A Boolean value that specifies whether the element was
successfully validated and has no errors.

fieldError An object that contains information about an error in the
element.

properties An object that contains the properties of the field element.

components An object that contains components for certain field types.

These components are used to render the element in the

Formcentric for CoreMedia | Developer Manual

Property Description

template. The object contains components for capicha,
fileUploader, comboBox, suggestions, hint, datePicker

and markdown.
fieldSetFields An array that contains the fields from a fieldset.
layoutFields An array that contains the fields from a fieldset.
summaryFields An array that contains the information from fields as speci-

fied in a SummaryField.

fieldEmptyText A piece of boilerplate displayed if the SummaryField
contains no values.

contentMarkup A content component that is returned by a function speci-
fied by the form div.

hasService A Boolean value that specifies whether the element has a
REST service.
setRESTParams (params: Record<string,any>) => void:

A function that is used to specify the parameters for the
element’'s REST service.

Element: The properties also contain all of the information about the element to be
shown.

interface fcElement {
id: string // ID des Elements
name: string // Technischer Name des Elements
type: fcFieldTypes // Elementtyp
fieldSetId?: string // ID des FieldSets, in dem das Element enthalten ist
layoutId?: string // ID des Layout Elements, in dem das Element enthalten ist
label?: string // Label des Elements
value?: string | string[] // Wert des Elements
validators?: fcElementValidator[] // Validatoren
children?: {
id: string
type: fcFieldTypes
name: string

label?: string

Formcentric for CoreMedia | Developer Manual

value?: string | stringl[]
checked?: boolean
properties?: fcProperties
validators?: fcElementValidator[]
H
properties?: fcProperties // Properties des
}
Field types:
type fcFieldTypes =
| 'error'
| 'success'
| 'formHeader'
| 'formFooter'
| 'inputField'
| 'button'
| 'form'
| 'layout’
| 'condition'
| 'passwordField'
| 'textArea'
| 'radioGroup’
| 'comboBox'
| 'checkBoxGroup'
| 'fileUpload'’
| 'calculatedValue'
| 'hiddenField'
| 'paragraph’

| 'summary'

Elements (siehe Properties)

Formcentric for CoreMedia | Developer Manual

58

| 'dateField'

| 'numberField'

| 'emailField'

| 'phoneField'

| 'shortText'

| 'captcha'

| 'content'

| 'option'

| 'fieldSet'

Validators:

interface fcElementValidator {
id: string
name: string
properties?: {
errormessage?: string
from?: string
to?: string
days_from?: string
days_to?: string
pattern?: string
max_files?: string
max_size?: string

file_types?: string

Properties: All HTML attributes and field properties from the form definition are
contained in props.properties. These are calculated as a result of conditions by
the Formcentric Client, for example, or configured by the form author for the corre-
sponding form field. The following table gives an overview of possible properties:

Formcentric for CoreMedia | Developer Manual 59

Property
hint

placeholder

selected

errormessage

multiple

auto_upload

datasource

datasource_params

dynamic

visible

hidden

writable

readonly

optional

mandatory

disabled

enabled

type

Description

An optional note text that gives the user more information
or provides instructions.

An optional placeholder text that is displayed in an input
field if no value has been entered.

A Boolean value that specifies whether the element is se-
lected by default.

An optional error message that is displayed if the element
is invalid.

A Boolean value that specifies whether multiple values
can be selected for this element.

A Boolean value that specifies whether an automatic up-
load function is activated.

A character string that specifies a data source.

A character string that specifies the parameters for the da-
ta source.

A Boolean value that specifies whether the element is dy-
namic and has properties that can be changed at runtime.

A Boolean value that specifies whether the element
should be visible.

A Boolean value that specifies whether the element
should be hidden.

A Boolean value that specifies whether the element
should be writable.

A Boolean value that specifies whether the element
should be read-only.

A Boolean value that specifies whether the element is op-
tional.

A Boolean value that specifies whether the element is re-
quired.

A Boolean value that specifies whether the element
should be deactivated.

A Boolean value that specifies whether the element
should be activated.

A character string that specifies the element type.

Formcentric for CoreMedia | Developer Manual

60

Components

Internal components are provided for selection by props.components. This is intended
to simplify work with individual form fields if there is no need to modify the functionality
provided by these fields. The following components are available:

Property
captcha
combobox
datePicker
fileUploader
hint
markdown

suggestions

Description

Loads captcha images from the Headless Server
Displays drop-down lists

Displays a date picker

Displays an upload dialog

Displays note text

Displays markdown as HTML elements

Displays autocomplete items from REST services as a
drop-down list under input fields

The following properties can be passed to the components named above:

captcha:

Property
buttonText

combobox:

Property

all

datepicker:

Property

all

fileUploader:

Property
trigger

inline

Description

An optional character string for the refresh button on the
captcha component. If this is not specified, the button
shows an icon instead.

Description

All properties from the template’s parameter must be
passed.

Description

All properties from the template’s parameter must be
passed.

Description
The class or ID of the trigger element

An optional Boolean value that specifies whether the
element should be displayed inline.

Formcentric for CoreMedia | Developer Manual 61

hint:

Property Description

all All properties from the template’s parameter must be
passed.

markdown:

Property Description

markdown The markdown property accepts stringified Markdown as
a value.

suggestions:

Property Description
All All properties from the template’s parameter must be
passed.

The components are executed within the HTML template literal tag in the templates:

${ props.components.captcha({.}) }

Modifying and extending templates

To extend the templates, you can modify the HTML elements and classes inside the
templates. This gives you the option of modifying the appearance and behaviour of
the components.

You can add or remove classes to modify the styling, or add additional HTML elements
in order to provide additional functionality.

The templates can also be executed asynchronously: this means that you can access
and display data that is not passed directly to the templates by the Formcentric Client.
This gives you the option of integrating with APIs or other external data sources.

To use asynchronous data in the templates, you can use JavaScript functions like
fetch to request data from a server. You can then display the data received in the
templates by utilising the corresponding variables or placeholders.

Extension options:

1. Support for one or more user-defined CSS classes. Optional CSS classes can be
added, to modify the styling of the input element. For this, a custom class can be
used in the className definition:

input className="customClass" />

2. Modifying the markup: New markup elements can easily be added and existing
elements modified:

Formcentric for CoreMedia | Developer Manual

inputField: (html, props) => html <div className="fc-field

${props?.properties?.hidden ? 'fc-hiddenField' : ''}
${props.properties?.hint ? 'fc-field--has-hint' : "'}
${props?.fieldError ? 'fc-field--has-error' : ''}

${props?.fieldSuccess ? 'fc-field--is-valid' : ''}">

${customFunction(props)}

<div className="fc-textinput">
<div className="fc-textinput__input">
<input

id=${props.id}
name=${props.name}
value=${props.value}
oninput=${props.oninput}
onfocus=${props.onfocus}
onblur=${props.onblur}
type=${props.properties.type || 'text'}
autocomplete=${props.properties?.autocomplete}
maxlength=${props.properties?.maxlength}
disabled=${props.properties?.disabled}
placeholder=${props.properties?.placeholder || ''}
readonly=${props.properties?.readonly}

${...customProperties}

/>

${props.components.suggestions(props)}
</div>

${1abel(html, props)} ${hint(html, props)} ${error(html, props)}
</div>
</div>

6.4.4. Special integration scenarios

For most use cases, the @formcentric/client script is simply loaded and then
executed. However, there are some special scenarios, such as single-page applica-
tions (SPA), in which the script must not be executed until the DOM tree has been
fully constructed. In such cases, it is useful to be able to import the script dynamically
and execute it at the exact moment when the virtual DOM has been fully constructed.
This point in time will depend on the SPA framework.

function App() {
const ref = useRef(null);

const formDef = "TGU5Kmxe4svPaahc2aSm-4PHzoKWWtvC ... D-ZwC6MPQRWA==";

useEffect(() => {
if (!'ref) return;

import("@formcentric/client/dist/formcentric");

}, [refl);

Formcentric for CoreMedia | Developer Manual

63

return (
<div
ref={ref}
data-fc-id="<<id>>"
data-fc-form-definition={formDef}
></div>
);
}

If no dynamic import is possible, the function initFormcentric from the
window.formcentric object can be called after loading the script.

window.formcentric.initFormcentric()

6.4.5. Troubleshooting

Always check the browser log. If no client output can be found there, then the
formcentric.js script was not loaded and/or executed.

There are two reasons for a message stating that the form div could not be found:
1. No div tag with the data attribute fc-id was found
2. The script formcentric.js was loaded without specifying the defer attribute

Several issues may cause a situation where no form is displayed although a form div
was found:

1. No div tag with the data attribute fc-id was found
2. The script formapp.js was not loaded

3. A missing template has prevented the client from starting.

Formcentric for CoreMedia | Developer Manual

64

	Developer Manual
	Table of Contents
	1. Introduction
	1.1. Terminology

	2. Overview
	3. System requirements
	4. Integration
	4.1. Add Maven Repository and npm registry
	4.2. Download Formcentric Extensions archive
	4.3. Integrate Formcentric Extensions
	4.4. Add Formcentric Studio app
	4.5. Download Formcentric Frontend archive
	4.6. Integrate Formcentric Brick
	4.7. Building the Workspace

	5. Configuration
	5.1. CoreMedia Headless Server
	5.2. CAE extension
	5.2.1. Spring configuration classes
	FormcentricAutoConfiguration.java
	FormcentricAnalyticsConfig.java
	FormcentricCaptchaConfig.java
	FormcentricControllersConfig.java
	formcentric-contentbeans.xml

	5.2.2. Usage without Formcentric Analytics
	5.2.3. Formcentric license file
	5.2.4. Web security
	5.2.5. Saving the form state
	FileFormStateStore
	BackendFormStateStore

	5.2.6. Password encryption

	5.3. Formcentric Analytics Servers
	5.4. Formcentric Headless Server

	6. Programming and customisation
	6.1. Extending the Formcentric Form Editor
	6.1.1. Adding a new form element
	6.1.2. Adding a new validator
	6.1.3. Adding a new action
	6.1.4. Adding new element properties
	6.1.5. Input elements for element properties
	6.1.6. Editing existing form elements
	6.1.7. User interface internationalisation

	6.2. Extending the CAE integration
	6.2.1. FreeMarker templates
	FreeMarker functions and macros
	fc.forEachPageElement
	fc.forEachPage
	fc.summary
	fc.captcha
	fc.ifCaptcha
	fc.getStandardButton
	fc.valueOut
	fc.conditions
	fc.calculatedValues
	fc.markdown
	fc.vars
	fc.bind
	fc.encodeUrl
	fc.hasValidator
	fc.validatorByName
	fc.elementByName

	Security library
	fc.xsrfToken
	fc.xsrfTokenName
	fc.xsrfTokenName

	6.2.2. Implementing an action
	6.2.3. Adding variables for pre-filling form fields
	6.2.4. Implementing a REST service
	6.2.5. JavaScript
	jQuery (npm package)
	@formcentric/jquery-file-upload (npm package)
	jquery-autocomplete.js (bundled)
	jquery-format.js (bundled)
	JSON (npm package)
	jquery-webforms.js
	Event reference

	6.3. Extending the server application
	6.3.1. Implementing an action
	6.3.2. Adding variables for pre-filling form fields
	6.3.3. Implementing a REST service

	6.4. Formcentric Client
	6.4.1. Theme
	6.4.2. Initialisation
	6.4.3. Templates
	Template properties
	Components
	Modifying and extending templates

	6.4.4. Special integration scenarios
	6.4.5. Troubleshooting

